World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ENTROPIC CHARACTERIZATION OF QUANTUM OPERATIONS

    https://doi.org/10.1142/S0219749911007794Cited by:20 (Source: Crossref)

    We investigate decoherence induced by a quantum channel in terms of minimal output entropy and map entropy. The latter is the von Neumann entropy of the Jamiołkowski state of the channel. Both quantities admit q-Renyi versions. We prove additivity of the map entropy for all q. For the case q = 2, we show that the depolarizing channel has the smallest map entropy among all channels with a given minimal output Renyi entropy of order two. This allows us to characterize pairs of channels such that the output entropy of their tensor product acting on a maximally entangled input state is larger than the sum of the minimal output entropies of the individual channels. We conjecture that for any channel Φ1 acting on a finite dimensional system, there exists a class of channels Φ2 sufficiently close to a unitary map such that additivity of minimal output entropy for Ψ1 ⊗ Ψ2 holds.