ENTROPIC CHARACTERIZATION OF QUANTUM OPERATIONS
Abstract
We investigate decoherence induced by a quantum channel in terms of minimal output entropy and map entropy. The latter is the von Neumann entropy of the Jamiołkowski state of the channel. Both quantities admit q-Renyi versions. We prove additivity of the map entropy for all q. For the case q = 2, we show that the depolarizing channel has the smallest map entropy among all channels with a given minimal output Renyi entropy of order two. This allows us to characterize pairs of channels such that the output entropy of their tensor product acting on a maximally entangled input state is larger than the sum of the minimal output entropies of the individual channels. We conjecture that for any channel Φ1 acting on a finite dimensional system, there exists a class of channels Φ2 sufficiently close to a unitary map such that additivity of minimal output entropy for Ψ1 ⊗ Ψ2 holds.