Decoy state quantum-key-distribution by using odd coherent states without monitoring signal disturbance
Abstract
Recently, a novel quantum-key-distribution (QKD) protocol, called Round-robin-differential-phase-shift (RRDPS) QKD, has been proposed to share a secure key without monitoring the signal disturbance. In this paper, we propose a decoy state RRDPS-QKD protocol with odd coherent states (OCS). We implement a one-intensity decoy state method into the RRDPS-QKD with OCS to estimate the key rate. The results show that both the maximum transmission distance and the key rate of our protocol are significantly improved. Moreover, only one-intensity decoy state is sufficient for the protocol to approach the asymptotic limit with infinite decoy states.