Effects of entanglement on vortex dynamics in the hydrodynamic representation of quantum mechanics
Abstract
The hydrodynamic representation of quantum mechanics describes virtual flow as if a quantum system were fluid in motion. This formulation illustrates pointlike vortices when the phase of a wavefunction becomes nonintegrable at nodal points. We study the dynamics of such pointlike vortices in the hydrodynamic representation for a two-particle wavefunction. In particular, we discuss how quantum entanglement influences vortex–vortex dynamics. For this purpose, we employ the time-dependent quantum variational principle combined with the Rayleigh–Ritz method. We analyze the vortex dynamics and establish connections with Dirac’s generalized Hamiltonian formalism.
Remember to check out the Most Cited Articles! |
---|
Check out Annual Physics Catalogue 2019 and recommend us to your library! |