Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

RECURRENT Z FORMS ON RIEMANNIAN AND KAEHLER MANIFOLDS

    https://doi.org/10.1142/S0219887812500594Cited by:19 (Source: Crossref)

    In this paper, we introduce a new kind of Riemannian manifold that generalize the concept of weakly Z-symmetric and pseudo-Z-symmetric manifolds. First a Z form associated to the Z tensor is defined. Then the notion of Z recurrent form is introduced. We take into consideration Riemannian manifolds in which the Z form is recurrent. This kind of manifold is named (ZRF)n. The main result of the paper is that the closedness property of the associated covector is achieved also for rank(Zkl) > 2. Thus the existence of a proper concircular vector in the conformally harmonic case and the form of the Ricci tensor are confirmed for(ZRF)n manifolds with rank(Zkl) > 2. This includes and enlarges the corresponding results already proven for pseudo-Z-symmetric (PZS)n and weakly Z-symmetric manifolds (WZS)n in the case of non-singular Z tensor. In the last sections we study special conformally flat (ZRF)n and give a brief account of Z recurrent forms on Kaehler manifolds.

    AMSC: Primary 53C15, Secondary 53C25