Nonlinear time evolution of coherent states with observation of super revivals in a generalized isotonic oscillator
Abstract
In this paper, we investigate revival and super revivals of nonlinear coherent states while generating these states through the interaction of coherent states of a generalized isotonic oscillator with the nonlinear media during time evolution. We construct the f-deformed generalized isotonic oscillator which is a non-isochronous partner of the generalized isotonic oscillator. We connect these two nonlinear oscillators through deformed ladder operators. The generalized isotonic oscillator possesses linear energy spectrum whereas f-deformed generalized isotonic oscillator exhibits nonlinear energy spectrum. The presence of the cubic nonlinearity in the f-deformed oscillator motivates us to study revivals, super and fractional revivals of coherent states which are nonlinearly evolved. We also investigate time-dependent expectation values of uncertainties in certain canonically conjugate variables and demonstrate that at revival and super revival times the uncertainty relation attains its minimum value.
Remember to check out the Most Cited Articles! |
---|
Check out new Mathematical Physics books in our Mathematics 2021 catalogue |