An intrinsic and exterior form of the Bianchi identities
Abstract
We give an elegant formulation of the structure equations (of Cartan) and the Bianchi identities in terms of exterior calculus without reference to a particular basis and without the exterior covariant derivative. This approach allows both structure equations and the Bianchi identities to be expressed in terms of forms of arbitrary degree. We demonstrate the relationship with both the conventional vector version of the Bianchi identities and to the exterior covariant derivative approach. Contact manifolds, codimension one foliations and the Cartan form of classical mechanics are studied as examples of its flexibility and utility.