Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Nonlocal transformations of the generalized Liénard type equations and dissipative Ermakov-Milne-Pinney systems

    https://doi.org/10.1142/S021988781950107XCited by:12 (Source: Crossref)

    We employ the method of nonlocal generalized Sundman transformations to formulate the linearization problem for equations of the generalized Liénard type and show that they may be mapped to equations of the dissipative Ermakov-Milne-Pinney type. We obtain the corresponding new first integrals of these derived equations, this method yields a natural generalization of the construction of Ermakov–Lewis invariant for a time-dependent oscillator to (coupled) Liénard and Liénard type equations. We also study the linearization problem for the coupled Liénard equation using nonlocal transformations and derive coupled dissipative Ermakov-Milne-Pinney equation. As an offshoot of this nonlocal transformation method when the standard Liénard equation, +f(x)+g(x)=0, is mapped to that of the linear harmonic oscillator equation, we obtain a relation between the functions f(x) and g(x) which is exactly similar to the condition derived in the context of isochronicity of the Liénard equation.

    AMSC: 34C14, 34C20
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!