World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0219887820500656Cited by:6 (Source: Crossref)

Spinors are used in physics quite extensively. Basically, the forms of use include Dirac four-spinors, Pauli three-spinors and quaternions. Quaternions in mathematics are essentially equivalent to Pauli spin matrices which can be generated by regarding a quaternion matrix as compound. The goal of this study is also the spinor structure lying in the basis of the quaternion algebra. In this paper, first, we have introduced spinors mathematically. Then, we have defined Fibonacci spinors using the Fibonacci quaternions. Later, we have established the structure of algebra for these spinors. Finally, we have proved some important formulas such as Binet and Cassini formulas which are given for some series of numbers in mathematics for Fibonacci spinors.

AMSC: 15A66, 11R52
Remember to check out the Most Cited Articles!

Check out new Mathematical Physics books in our Mathematics 2021 catalogue
Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!