World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GRADIENT DRIVEN AND SINGULAR FLUX BLOWUP OF SMOOTH SOLUTIONS TO HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

    https://doi.org/10.1142/S021989160400024XCited by:8 (Source: Crossref)

    We consider two new classes of examples of sup-norm blowup in finite time for strictly hyperbolic systems of conservation laws. The explosive growth in amplitude is caused either by a gradient catastrophe or by a singularity in the flux function. The examples show that solutions of uniformly strictly hyperbolic systems can remain as smooth as the initial data until the time of blowup. Consequently, blowup in amplitude is not necessarily strictly preceded by shock formation.