LOCAL EXISTENCE AND CONTINUATION CRITERIA FOR SOLUTIONS OF THE EINSTEIN–VLASOV-SCALAR FIELD SYSTEM WITH SURFACE SYMMETRY
Abstract
We prove in the cases of spherical, plane and hyperbolic symmetry a local in time existence theorem and continuation criteria for cosmological solutions of the Einstein–Vlasov-scalar field system, with the sources generated by a distribution function and a scalar field, subject to the Vlasov and wave equations respectively. This system describes the evolution of self-gravitating collisionless matter and scalar waves within the context of general relativity. In the case where the only source is a scalar field it is shown that a global existence result can be deduced from the general theorem.