World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

OBTAINING THE CRITICAL DRAW RATIO OF DRAW RESONANCE IN MELT SPINING FOR POWER LAW POLYMER FLUIDS

    Cited by:0 (Source: Crossref)

    A direct difference method has been developed for Non-Newtonian power law fluids to solve the simultaneous non-linear partial differential equations of melt spinning, and to determine the critical draw ratio for draw resonance. The results show that for shear thin fluids, the logarithm of the critical draw ratio has a well defined linear relationship with the power index for isothermal and uniform tension melt spinning. When the power index approaches zero, the critical draw ratio points at unity, indicating no melt spinning can be processed stably for such fluids. For shear thick fluids, the critical draw ratio increases in a more rapid way with increasing the power index.