World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

IMMUNE AND NEURAL NETWORK MODELS: THEORETICAL AND EMPIRICAL COMPARISONS

    https://doi.org/10.1142/S1469026801000238Cited by:52 (Source: Crossref)

    This paper brings a detailed mathematical description of an artificial immune network model, named aiNet. The model is implemented in association with graph concepts and hierarchical clustering techniques, and is proposed to perform machine learning, data compression and cluster analysis. Pictorial representations for the aiNet basic units and typical architectures are introduced. The proposed immune network was primarily compared on a theoretical basis with well-known artificial neural networks. Then, the aiNet was applied to a non-linearly separable benchmark and a real-world problem, and the results were compared with that of the self-organizing feature map and with others already presented in the literature.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!