A MULTI-COLONY ANT SYSTEM FOR COMBINATORIAL OPTIMIZATION PROBLEM
Abstract
A multi-colony ant system (MAS) is proposed for the combinatorial optimization problems. The proposed MAS is inspired by the knowledge that there are many colonies of ants in the natural world and organized with multiple colonies of ants. At first, ants perform solution search procedure by cooperating with each other in the same colony until no better solution is found after a certain time period. Then, communication between different colonies is performed to build new pheromone distributions for each colony, and ants start their search procedure again in each separate colony, based on the new pheromone distribution. The proposed algorithm is tested by simulating the traveling salesman problem (TSP). Simulation results show that the proposed method performs better than the traditional ACO.
Remember to check out the Most Cited Articles! |
---|
Check out these titles in artificial intelligence! |