World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A COMPARISON BETWEEN QUANTUM INSPIRED BACTERIAL FORAGING ALGORITHM AND GA-LIKE ALGORITHM FOR GLOBAL OPTIMIZATION

    https://doi.org/10.1142/S1469026812500162Cited by:4 (Source: Crossref)

    Bacterial foraging algorithm (BFA) is a population-based stochastic search technique for solving various scientific and engineering problems. However, it is inefficient in some practical situations. In order to improve the performance of the BFA, we propose a novel optimization algorithm, named quantum inspired bacterial foraging algorithm (QBFA), which applies several quantum computing principles, and a new mechanism is proposed to encode and observe the population. The algorithm has been evaluated on the standard high-dimensional benchmark functions in comparison with GA, PSO, GSO and FBSA, respectively. The proposed algorithm is then used to tune a PID controller of an automatic voltage regulator (AVR) system. Simulation results clearly illustrate that the proposed approach is very efficient and could be easily extended to 300 or higher-dimensional problems.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!