World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PERFORMANCE EVALUATION OF PARALLEL GENETIC AND PARTICLE SWARM OPTIMIZATION ALGORITHMS WITHIN THE MULTICORE ARCHITECTURE

    https://doi.org/10.1142/S1469026814500242Cited by:2 (Source: Crossref)

    In recent studies we found that there are many optimization methods presented for multicore processor performance optimization, however each method is suffered from limitations. Hence in this paper we presented a new method which is a combination of bacterial Foraging Particle swarm Optimization with certain constraints named as Constraint based Bacterial Foraging Particle Swarm Optimization (CBFPSO) scheduling can be effectively implemented. The proposed Constraint based Bacterial Foraging Particle Swarm Optimization (CBFPSO) scheduling for multicore architecture, which updates the velocity and position by two bacterial behaviours, i.e. reproduction and elimination dispersal. The performance of CBFPSO is compared with the simulation results of GA, and the result shows that the proposed algorithm has pretty good performance on almost all types of cores compared to GA with respect to completion time and energy consumption.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!