World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Novel Method for Classification of ECG Arrhythmias Using Deep Belief Networks

    https://doi.org/10.1142/S1469026816500218Cited by:35 (Source: Crossref)

    In this paper, a novel approach based on deep belief networks (DBN) for electrocardiograph (ECG) arrhythmias classification is proposed. The construction process of ECG classification model consists of two steps: features learning for ECG signals and supervised fine-tuning. In order to deeply extract features from continuous ECG signals, two types of restricted Boltzmann machine (RBM) including Gaussian–Bernoulli and Bernoulli–Bernoulli are stacked to form DBN. The parameters of RBM can be learned by two training algorithms such as contrastive divergence and persistent contrastive divergence. A suitable feature representation from the raw ECG data can therefore be extracted in an unsupervised way. In order to enhance the performance of DBN, a fine-tuning process is carried out, which uses backpropagation by adding a softmax regression layer on the top of the resulting hidden representation layer to perform multiclass classification. The method is then validated by experiments on the well-known MIT-BIH arrhythmia database. Considering the real clinical application, the inter-patient heartbeat dataset is divided into two sets and grouped into four classes (N, S, V, F) following the recommendations of AAMI. The experiment results show our approach achieves better performance with less feature learning time than traditional hand-designed methods on the classification of ECG arrhythmias.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!