Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Intelligent Intrusion Detection System Through Combined and Optimized Machine Learning

    https://doi.org/10.1142/S1469026818500074Cited by:4 (Source: Crossref)

    In this paper, an existing rule-based intrusion detection system (IDS) is made more intelligent through the application of machine learning. Snort was chosen as it is an open source software and though it was performing well, it showed false positives (FPs). To find the best performing machine learning algorithms (MLAs) to use with Snort so as to improve its detection, we tested some algorithms on three available datasets. Support vector machine (SVM) was chosen along with fuzzy logic and decision tree based on their accuracy. Combined versions of algorithms through ensemble SVM along with other variants were tried on the generated traffic of normal and malicious packets at 10Gbps. Optimized versions of the SVM along with firefly and ant colony optimization (ACO) were also tried, and the accuracy improved remarkably. Thus, the application of combined and optimized MLAs to Snort at 10Gbps worked quite well.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!