World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S1469026820500224Cited by:1 (Source: Crossref)

Groundwater management problems are typically of a large-scale nature, involving complex nonlinear objective functions and constraints, which are commonly evaluated through the use of numerical simulation models. Given these complexities, metaheuristic optimization algorithms have recently become popular choice for solving such complex problems which are difficult to solve by traditional methods. However, the practical applications of metaheuristics are severely challenged by the requirement of large number of function evaluations to achieve convergence. To overcome this shortcoming, many new metaheuristics and different variants of existing ones have been proposed in recent years. In this study, a recently developed algorithm called flower pollination algorithm (FPA) is investigated for optimal groundwater management. The FPA is improved, combined with the widely used groundwater flow simulation model MODFLOW, and applied to solve two groundwater management problems. The proposed algorithm, denoted as IFPA, is first tested on a hypothetical aquifer system, to minimize the total pumping to contain contaminated groundwater within a capture zone. IFPA is then applied to maximize the total annual pumping from existing wells in Rhis-Nekor unconfined coastal aquifer on the northern of Morocco. The obtained results indicate that IFPA is a promising method for solving groundwater management problems as it outperforms the standard FPA and other algorithms applied to the case studies considered, both in terms of convergence rate and solution quality.

Remember to check out the Most Cited Articles!

Check out these titles in artificial intelligence!