World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Comparison of Nitrogen Dioxide Predictions During a Pandemic and Non-pandemic Scenario in the City of Madrid using a Convolutional LSTM Network

    https://doi.org/10.1142/S1469026822500146Cited by:6 (Source: Crossref)

    Traditionally, machine learning technologies with the methods and capabilities available, combined with a geospatial dimension, can perform predictive analyzes of air quality with greater accuracy. However, air pollution is influenced by many external factors, one of which has recently been caused by the restrictions applied to curb the relentless advance of COVID-19. These sudden changes in air quality levels can negatively influence current forecasting models. This work compares air pollution forecasts during a pandemic and non-pandemic period under the same conditions. The ConvLSTM algorithm was applied to predict the concentration of nitrogen dioxide using data from the air quality and meteorological stations in Madrid. The proposed model was applied for two scenarios: pandemic (January–June 2020) and non-pandemic (January–June 2019), each with sub-scenarios based on time granularity (1-h, 12-h, 24-h and 48-h) and combination of features. The Root Mean Square Error was taken as the estimation metric, and the results showed that the proposed method outperformed a reference model, and the feature selection technique significantly improved the overall accuracy.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!