World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Self-Supervised Image Aesthetic Assessment Based on Transformer

    https://doi.org/10.1142/S1469026824500299Cited by:0 (Source: Crossref)

    Visual aesthetics has always been an important area of computational vision, and researchers have continued exploring it. To further improve the performance of the image aesthetic evaluation task, we introduce a Transformer into the image aesthetic evaluation task. This paper pioneers a novel self-supervised image aesthetic evaluation model founded upon Transformers. Meanwhile, we expand the pretext task to capture rich visual representations, adding a branch for inpainting the masked images in parallel with the tasks related to aesthetic quality degradation operations. Our model’s refinement employs the innovative uncertainty weighting method, seamlessly amalgamating three distinct losses into a unified objective. On the AVA dataset, our approach surpasses the efficacy of prevailing self-supervised image aesthetic assessment methods. Remarkably, we attain results approaching those of supervised methods, even while operating with a limited dataset. On the AADB dataset, our approach improves the aesthetic binary classification accuracy by roughly 16% compared to other self-supervised image aesthetic assessment methods and improves the prediction of aesthetic attributes.

    Remember to check out the Most Cited Articles!

    Check out these titles in artificial intelligence!