World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DISSIPATIVE PARTICLE DYNAMICS: INTRODUCTION, METHODOLOGY AND COMPLEX FLUID APPLICATIONS — A REVIEW

    https://doi.org/10.1142/S1758825109000381Cited by:156 (Source: Crossref)

    The dissipative particle dynamics (DPD) technique is a relatively new mesoscale technique which was initially developed to simulate hydrodynamic behavior in mesoscopic complex fluids. It is essentially a particle technique in which molecules are clustered into the said particles, and this coarse graining is a very important aspect of the DPD as it allows significant computational speed-up. This increased computational efficiency, coupled with the recent advent of high performance computing, has subsequently enabled researchers to numerically study a host of complex fluid applications at a refined level. In this review, we trace the developments of various important aspects of the DPD methodology since it was first proposed in the in the early 1990's. In addition, we review notable published works which employed DPD simulation for complex fluid applications.

    Remember to check out the Most Cited Articles!

    Check out these titles in Mechanical Engineering!