World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Static Deflection and Pull-In Instability of the Electrostatically Actuated Bilayer Microcantilever Beams

    https://doi.org/10.1142/S1758825115500908Cited by:18 (Source: Crossref)

    This paper deals with the static behavior of an electrostatically actuated bilayered microswitch on the basis of the modified couple stress theory. The beam is modeled using Euler–Bernoulli beam theory and equivalent elastic modulus and length scale parameter are presented for the bilayer beam. Static deflection and pull-in voltage of the beam is calculated using numerical and analytical methods. The numerical method is based on an iterative approach while the homotopy perturbation method (HPM) is utilized for the analytical simulation. Results show that there is a very good agreement between these methods even in the vicinity of the pull-in instability. Moreover, the effects of different parameters such as thicknesses of layers and length scale parameter on the static deflection and instability of the microcantilever are studied. Results show that for the cases with the equivalent length scale parameter comparable to the thickness of beam, the size-dependency plays significant roles in the static behavior of the bilayer microcantilevers.