World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Experimental and Numerical Comparison Between Two Nonlinear Control Logics

    https://doi.org/10.1142/S1758825116500617Cited by:11 (Source: Crossref)

    Nonlinear behavior is present in the operating conditions of many mechanical systems, especially if nonsmall oscillations are considered. In these cases, in order to improve vibration control performance, a common engineering practice is to design the control system on a set of linearized models, for given operating conditions. The well-known gain-scheduling technique allows the parameters of the control law to be changed according to the current working condition, also increasing system stability. However, more recently new control logics directly applicable to the systems in nonlinear form have been developed. The aim of this paper is to study, both numerically and experimentally, the dynamic of a mechanical system (a 3-link flexible manipulator) comparing the performance of a fully nonlinear control (the sliding-mode control) and a standard linearized approach.

    Remember to check out the Most Cited Articles!

    Check out these titles in Mechanical Engineering!