World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Experimental Estimation of Friction and Friction Coefficient of a Lightweight Hydraulic Cylinder Intended for Robotics Applications

    https://doi.org/10.1142/S1758825118500801Cited by:8 (Source: Crossref)

    Recently, hydraulic actuator has been used in several engineering applications such as: aeronautics, construction and robotics. This is due to the need of high torque and power density in such engineering applications. Despite these advantages, hydraulic actuators are fabricated from metallic materials, which provoke their heavy weight, which necessitate the development of a lightweight hydraulic actuator, fabricated of composite materials. Using composite materials in hydraulic cylinders, it is important to study the friction force characteristics and to estimate the friction coefficient between composites and O-rings, which is presented in this paper. This paper deals with the estimation of Coulomb friction and friction coefficient in the lightweight hydraulic cylinder fabricated mainly of composite materials. The actuator is presented by its dynamic equation of motion, where each term is discussed including the stiffness coefficient, the viscous damping coefficient, the kinematics and the pressure parameters. Meanwhile, these coefficients and parameters are obtained according to data recorded from conducted experiments. As a result, the new methodology which uses the experimental measurements combined the dynamic model has succeeded to evaluate the friction inside the hydraulic cylinder which has been estimated and found to be around 166N, while the corresponding coefficient of friction is computed (about 0.61 as average value). These results will be important for further optimization of the material choice and actuator design, which will help in the amelioration of the hydraulic cylinder.

    Remember to check out the Most Cited Articles!

    Check out these titles in Mechanical Engineering!