World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NANOSTRUCTURED PARTICLES AND LAYERS FOR SENSING CONTAMINANTS IN AIR AND WATER

    https://doi.org/10.1142/S1793292008001015Cited by:7 (Source: Crossref)

    Chemical sensor layers for environmental applications require optimal selectivity, sensitivity, and long term stability, which can be achieved in artificial matrices. For detecting thiols in air, reversible affinity interactions can be optimized by varying the stoichiometry of molybdenum disulphide nanoparticles to achieve sulphur deficiencies. Generating MoS1.9 increases the quartz crystal microbalance (QCM) sensor responses towards butane thiol by a factor of three. Artificial recognition sites are accessible by molecular imprinting: acrylate copolymers can be tuned in polarity to interact selectively with atrazine in water leading to detection limits below one ppb with QCM sensors. Finally, sensor arrays coated with six different molecularly imprinted polymers (MIP) correctly reproduce the ethyl acetate concentration of a composter over a period of two weeks validated by GC-MS measurements.