Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Synthesis of CdxZn1xS@MIL-101(Cr) Composite Catalysts for the Photodegradation of Methylene Blue

    https://doi.org/10.1142/S1793292018501187Cited by:4 (Source: Crossref)

    Nanoparticles of the semiconductor catalyst CdxZn1xS were embedded into the metal organic framework MIL-101(Cr) to obtain CdxZn1xS@MIL-101(Cr) nanocomposites. These materials not only possess high surface areas and mesopores but also show good utilization of light energy. The ultraviolet-visible diffuse reflectance patterns of CdxZn1xS@MIL-101(Cr) nanocomposites showed that Cd0.8Zn0.2S@MIL-101(Cr) possessed good visible light response ability among the synthesized nanocomposites. The photocatalytic performance of the CdxZn1xS@MIL-101(Cr) nanocomposites were tested via degradation and mineralization of methylene blue in neutral water solution under light irradiation using a 300W xenon lamp. As a result, using Cd0.8Zn0.2S@MIL-101(Cr) as a catalyst, 99.2% of methylene blue was mineralized within 30min. Due to the synergistic effect of adsorption by the MIL-101(Cr) component and photocatalytic degradation provided by the Cd0.8Zn0.2S component, the Cd0.8Zn0.2S@MIL-101(Cr) catalyst displayed superior photocatalytic performance relative to Cd0.8Zn0.2S and MIL-101(Cr). Furthermore, Cd0.8Zn0.2S@MIL-101(Cr) possessed excellent stability during photodegradation and exhibited good reusability. The remarkable photocatalytic performance of Cd0.8Zn0.2S@MIL-101(Cr) is likely due to the effective transfer of electrons and holes at the heterojunction interfaces.