World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Antibacterial Chitosan Hybrid Films with N-Halamine-Functionalized Graphene Oxide

    https://doi.org/10.1142/S1793292020500277Cited by:4 (Source: Crossref)

    Graphene, a single layer of two-dimensional carbon material, has attracted much attention due to its excellent comprehensive properties including high mechanical strength, antibacterial property, excellent thermal and electrical conductivities, high specific surface area, impermeability, etc. In this study, 3-epoxypropyl-5,5-dimethylhydantoin (GH), as a precursor of N-halamine, was synthesized and attached onto graphene oxide (GO) for enhanced antibacterial activity. The synthesized GO–GH was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). After chlorination treatment by household bleach solution, the chlorinated graphene oxide-3-epoxypropyl-5,5-dimethylhydantoin (GO–GH–Cl) possessed great antibacterial efficacy. The synthesized GO–GH–Cl was added to chitosan (CS) solution to produce GO–GH–Cl/CS hybrid films via a solution casting method. The as-prepared antimicrobial hybrid films showed excellent antibacterial activity and could kill 100% of S. aureus and 100% of E. coli O157:H7 within 10min and 30min of contact time, respectively.