Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Green Synthesis of Silver Nanoparticles Using Plant Extract Blends and Its Impact on Antibacterial and Biological Activity

    https://doi.org/10.1142/S1793292024500760Cited by:0 (Source: Crossref)

    There is a strong interest in using green resources for synthesizing nanoparticles (NPs) of industrial and biomedical utility in a way to maintain desired material properties throughout use while not inducing any harmful effects. The use of various plant extracts as reducing, capping, or stabilizing agents is widely attempted in green nanotechnology. However, very little has been explored about incorporating plant extract blends into green NP synthesis routes. Here, we used the combination of tea and olive leaf extracts for the synthesis of silver NPs and evaluated the advantages it provided over both chemical and single-plant-mediated synthesis routes. Four different reducing agents (tannic acid, black tea leaves extract, olive leaves extract and their blend) were used to synthesize silver NPs (Ag NP) from silver nitrate (AgNO3). The synthesized Ag NP was characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), and ultraviolet-visible (US-Vis) spectroscopy. The antimicrobial properties of Ag NP were assessed against Escherichia coli (E. Coli) and Staphylococcus aureus (S. Aureus) using the colony-forming unit (CFU) assay and the minimum inhibitory concentration (MIC) assay. The cytotoxic potential of Ag NP on human colorectal adenocarcinoma (Caco-2) cells was assessed by the WST-1 assay. Results showed that Ag NP synthesized using plant extract mixtures had a primary particle size of 40nm and were very effective antibacterial agents, with the MIC values ranging from 5μg/mL to 10μg/mL. While the particle size obtained in chemical synthesis was slightly lower, the resultant Ag NP did not serve as an effective antibacterial agents at low doses. Further understanding of how best to integrate extracts of different plants into green NP synthesis routes will enable wider and safer biomedical applications.