World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Deep Learning-Based Stair Segmentation and Behavioral Cloning for Autonomous Stair Climbing

    https://doi.org/10.1142/S1793351X1940021XCited by:5 (Source: Crossref)
    This article is part of the issue:

    Mobile robots are widely used in the surveillance industry, for military and industrial applications. In order to carry out surveillance tasks like urban search and rescue operation, the ability to traverse stairs is of immense significance. This paper presents a deep learning-based approach for semantic segmentation of stairs, behavioral cloning for stair alignment, and a novel mechanical design for an autonomous stair climbing robot. The main objective is to solve the problem of locomotion over staircases with the proposed implementation. Alignment of a robot with stairs in an image is a traditional problem, and the most recent approaches are centered around hand-crafted texture-based Gabor filters and stair detection techniques. However, we could arrive at a more scalable and robust pipeline for alignment schemes. The proposed deep learning technique eliminates the need for manual tuning of parameters of the edge detector, the Hough accumulator and PID constants. The empirical results and architecture of stair alignment pipeline are demonstrated in this paper.