Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Different kinds of generalized rough sets based on neighborhoods with a medical application

    https://doi.org/10.1142/S1793524521500868Cited by:28 (Source: Crossref)

    Approximation space can be said to play a critical role in the accuracy of the set’s approximations. The idea of “approximation space” was introduced by Pawlak in 1982 as a core to describe information or knowledge induced from the relationships between objects of the universe. The main objective of this paper is to create new types of rough set models through the use of different neighborhoods generated by a binary relation. New approximations are proposed representing an extension of Pawlak’s rough sets and some of their generalizations, where the precision of these approximations is substantially improved. To elucidate the effectiveness of our approaches, we provide some comparisons between the proposed methods and the previous ones. Finally, we give a medical application of lung cancer disease as well as provide an algorithm which is tested on the basis of hypothetical data in order to compare it with current methods.

    AMSC: 54B30, 03E72, 03E99, 60L90

    Remember to check out the Most Cited Articles in IJB!
    Check out new Biomathematics books in our Mathematics 2018 catalogue!
    Featuring author Frederic Y M Wan and more!