World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S1793525315500089Cited by:3 (Source: Crossref)

Consider two bounded domains Ω and Λ in ℝ2, and two sufficiently regular probability measures μ and ν supported on them. By Brenier's theorem, there exists a unique transportation map T satisfying T#μ = ν and minimizing the quadratic cost ∫n ∣T(x) - x∣2 dμ(x). Furthermore, by Caffarelli's regularity theory for the real Monge–Ampère equation, if Λ is convex, T is continuous.

We study the reverse problem, namely, when is T discontinuous if Λ fails to be convex? We prove a result guaranteeing the discontinuity of T in terms of the geometries of Λ and Ω in the two-dimensional case. The main idea is to use tools of convex analysis and the extrinsic geometry of ∂Λ to distinguish between Brenier and Alexandrov weak solutions of the Monge–Ampère equation. We also use this approach to give a new proof of a result due to Wolfson and Urbas.

We conclude by revisiting an example of Caffarelli, giving a detailed study of a discontinuous map between two explicit domains, and determining precisely where the discontinuities occur.