World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on NUS Chongqing Research Institute; Guest Editor: Guo Qin XuNo Access

Battery material thermal instability and side reaction for lithium-ion battery thermal runaway: A short review

    https://doi.org/10.1142/S1793604723400106Cited by:4 (Source: Crossref)
    This article is part of the issue:

    Thermal runaway (TR) is one of the challenging problems in the safety of lithium-ion batteries (LIBs). The monitoring and early warning of TR events, the analysis and modeling of TR mechanisms, and the control of TR are crucial in battery safety research. This review first analyzes the three abuse factors. The identification and analysis of the characteristic temperatures in TR, including the onset temperature of self-heating, the initiation temperature of TR, and the maximum temperature of the TR are reviewed and analyzed. The heat of internal side reactions (ISRs) comes from the separate decomposition, oxidation or mutual reactions of solid electrolyte interphase, positive electrolyte interphase, positive and negative active materials, and electrolyte, which induce the gradual development of the battery towards TR. The ISR mechanism, thermodynamic and reaction kinetic characteristics are reviewed in detail.