World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

On the intersection graph of gamma sets in the zero-divisor graph

    https://doi.org/10.1142/S1793830914500670Cited by:5 (Source: Crossref)

    Let R be a commutative ring. The intersection graph of gamma sets in the zero-divisor graph Γ(R) of R is the graph IΓ(R) with vertex set as the collection of all gamma sets of the zero-divisor graph Γ(R) of R and two distinct vertices A and B are adjacent if and only if A ∩ B ≠ ∅. In this paper, we study about various properties of IΓ(R) and investigate the interplay between the graph theoretic properties of IΓ(R) and the ring theoretic properties of R.

    AMSC: 05C99, 05C15, 13A99