A Systematic Study of the Catalytic Behavior at Enzyme–Metal-Oxide Nanointerfaces
Abstract
Metal-oxide nanoparticles with high surface area, controllable functionality and thermal and mechanical stability provide high affinity for enzymes when the next generation of biosensor applications are being considered. We report on the synthesis of metal-oxide-based nanoparticles (with different physical and chemical properties) using hydrothermal processing, photo-deposition and silane functionalization. Physical and chemical properties of the user-synthesized nanoparticles were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Raman scattering, respectively. Thus, characterized metal-oxide-based nanoparticles served as nanosupports for the immobilization of soybean peroxidase enzyme (a model enzyme) through physical binding. The enzyme–nanosupport interface was evaluated to assess the optimum nanosupport characteristics that preserve enzyme functionality and its catalytic behavior. Our results showed that both the nanosupport geometry and its charge influence the functionality and catalytic behavior of the bio-metal-oxide hybrid system.