Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Factorial Design-Based Nanocarrier Mediated Formulation of Efavirenz and Its Characterization

    https://doi.org/10.1142/S1793984422500027Cited by:1 (Source: Crossref)

    Efavirenz (EFV) suffers from poor aqueous solubility which results in low bioavailability of the drug. Nanocarrier-based drug delivery systems offer a suitable alternative for improving the physico-chemical properties of the drug and hence its efficacy. Nanosuspension (NS) of EFV was formulated by solvent-anti solvent precipitation method using PVP K-30 as stabilizer and sodium lauryl sulphate (SLS) as the wetting agent. Multi-level factorial design was applied to select the optimal formulation which was further characterized. The optimal batch exhibited mean particle size of 305nm and polydispersity index (PDI) of 0.345. Solid-state characterization studies of the NS conducted using scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction, and differential scanning calorimetry (DSC) revealed compatibility between the drug and the excipients and modest alteration in the crystallinity of the drug. There was progressive increase in the solubility of the drug when incorporated in NS from 17.39μg/ml to 256μg/ml. Further, drug release studies showed significantly better and controlled drug release pattern in comparison to the free drug due to the presence of nanosized particles in the formulation.