Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Voltammetric Detection of Inositol Using a Platinum Based Electrode

    https://doi.org/10.1142/S1793984422500040Cited by:6 (Source: Crossref)

    An electrochemical detection of inositol content using platinum (Pt)-based noble metal electrode is investigated. In this work, the electrochemical behavior of the platinum electrode has been studied and analyzed using a three-electrode system against a silver–silver chloride (Ag/AgCl) reference electrode and a steel counter electrode. Differential pulse voltammetry technique has been employed for this experimental study. A satisfactory linear range of operation was obtained from 50 to 400μM with LOD=19.28μM. Electrochemical responses for several inositol concentrations 50, 80, 100, 200, 300 and 400μM have also been analyzed using principal component analysis (PCA) with effective data clustering. A good class separability index (SI) was found to be 142.91. In addition, a prediction estimation of inositol contents using partial least square regression (PLSR) and principal component regression (PCR) algorithms were also evaluated and prediction accuracies of 93.69% and 93.71% were obtained, respectively. Moreover, the application of the Pt electrode over real orange juice sample extracts revealed satisfactory recovery rate of 96.18%. Thus, this technique of electrochemical system may be subjected for inositol detection in our daily-life food (especially juice, beverages) consumption.