World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Physical aspects of 0-3 dielectric composites

    https://doi.org/10.1142/S2010135X15500125Cited by:32 (Source: Crossref)

    0-3 dielectric composites with high dielectric constants have received great interest for various technological applications. Great achievements have been made in the development of high performance of 0-3 composites, which can be classified into dielectric–dielectric (DDCs) and conductor–dielectric composites (CDCs). However, predicting the dielectric properties of a composite is still a challenging problem of both theoretical and practical importance. Here, the physical aspects of 0-3 dielectric composites are reviewed. The limitation of current understanding and new developments in the physics of dielectric properties for dielectric composites are discussed. It is indicated that the current models cannot explain well the physical aspects for the dielectric properties of 0-3 dielectric composites. For the CDCs, experimental results show that there is a need to find new equations/models to predict the percolative behavior incorporating more parameters to describe the behavior of these materials. For the DDCs, it is indicated that the dielectric loss of each constituent has to be considered, and that it plays a critical role in the determination of the dielectric response of these types of composites. The differences in the loss of the constituents can result in a higher dielectric constant than both of the constituents combined, which breaks the Wiener limits.

    This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 3.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited.