World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Linear eigenvalue statistics of random matrices with a variance profile

    https://doi.org/10.1142/S2010326322500046Cited by:7 (Source: Crossref)

    We give an upper bound on the total variation distance between the linear eigenvalue statistic, properly scaled and centered, of a random matrix with a variance profile and the standard Gaussian random variable. The second-order Poincaré inequality-type result introduced in [S. Chatterjee, Fluctuations of eigenvalues and second order poincaré inequalities, Prob. Theory Rel. Fields 143(1) (2009) 1–40.] is used to establish the bound. Using this bound, we prove central limit theorem for linear eigenvalue statistics of random matrices with different kind of variance profiles. We re-establish some existing results on fluctuations of linear eigenvalue statistics of some well-known random matrix ensembles by choosing appropriate variance profiles.