Linear eigenvalue statistics of random matrices with a variance profile
Abstract
We give an upper bound on the total variation distance between the linear eigenvalue statistic, properly scaled and centered, of a random matrix with a variance profile and the standard Gaussian random variable. The second-order Poincaré inequality-type result introduced in [S. Chatterjee, Fluctuations of eigenvalues and second order poincaré inequalities, Prob. Theory Rel. Fields 143(1) (2009) 1–40.] is used to establish the bound. Using this bound, we prove central limit theorem for linear eigenvalue statistics of random matrices with different kind of variance profiles. We re-establish some existing results on fluctuations of linear eigenvalue statistics of some well-known random matrix ensembles by choosing appropriate variance profiles.