World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Improving on current using new double-material heterojunction gate all around TFET (DMHJGAA TFET): Modeling and simulation

    https://doi.org/10.1142/S2047684121500214Cited by:1 (Source: Crossref)

    Transistor, which is the building block of all electronic devices, has continuously scaled down its dimensions for better efficiency since the advent of CMOS circuits. Due to the thermal limit on the switching and various short-channel effects (SCEs), highly scaled MOSFETs are rendered unusable for low-power applications. Hence, the Tunnel Field-Effect Transistors (TFETs) are studied extensively for ultra-low-power applications. Further, multigate TFETs have emerged as the prime candidates for achieving better gate controllability. Throughout this work, a newly revised analytical model for Heterojunction Gate All Around (HJGAA) TFET is demonstrated using a 2D parabolic approximation equation. Analytical expressions are derived for both potential distribution and field distribution using appropriate boundary conditions. This distribution of electric fields is further used to measure the rate of tunneling output, and then we have extracted the drain current numerically. The findings indicate a substantial change in the drain current characteristics while reducing the SCE impacts to a considerable amount. Feasibility of the newly updated model is verified by comparing the results of the analytical model with the results of TCAD simulator.

    Remember to check out the Most Cited Articles!

    Check out our Materials Science new titles
    Topics in Semiconductors/ Spintronics/ Crystallography