World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Empirical Analysis of Phrase-Based Statistical Machine Translation System for English to Hindi Language

    https://doi.org/10.1142/S219688882250004XCited by:15 (Source: Crossref)

    Hindi is the national language of India. However, most of the Government records, resolutions, news, etc. are documented in English which remote villagers may not understand. This fact motivates to develop an automatic language translation system from English to Hindi. Machine translation is the process of translating a text in one natural language into another natural language using computer system. Grammatical structure of Hindi language is very much complex than English language. The structural difference between English and Hindi language makes it difficult to achieve good quality translation results. In this paper, phrase-based statistical machine translation approach (PBSMT) is used for translation. Translation, reordering and language model are main working components of a PBSMT system. This paper evaluates the impact of various combinations of these PBSMT system parameters on automated English to Hindi language translation quality. Freely available n-gram-based BLEU metric and TER metric are used for evaluating the results.