World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S2301385025500323Cited by:1 (Source: Crossref)

The growing utilization of unmanned aerial vehicles (UAVs) in military operations has necessitated the development of a suitable weaponry for these kind of platforms. One of the trending categories of such armaments is the aerial gliding vehicle (AGV). AGVs have no propulsion system, consequently, a critical need for a robust flight control system (FCS) tailored to this kind of aerial systems is raised. This research focuses on designing a nonlinear model based controller, starting with the construction of a precise model through practical experiments and the establishment of a dedicated testing and flight simulation environment. Recognizing the limitations of traditional nonlinear dynamic inversion (NDI) due to its dependence on the vehicle model, the modified incremental nonlinear dynamic inversion (MI-NDI) is developed to operate in the presence of wind, model mismatches, and external disturbances. In this research, an extensive testing is conducted in a hardware-in-the-loop (HIL) simulation environment which validates the MI-NDI controller’s superior performance, even in challenging conditions. The research outcomes mark a significant advancement in enhancing autopilot precision for advanced aerial weaponry and unmanned vehicles.

This paper was recommended for publication in its revised form by editorial board member, Biao Wang.