World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Validation of the Chicken Femur as a Model for the Human Metacarpal: An In-Vitro Analysis

    https://doi.org/10.1142/S2424835524500383Cited by:0 (Source: Crossref)

    Background: The aim of this study was to evaluate the chicken femur as a laboratory model for the human metacarpal by comparing the bone microarchitecture and mechanical properties of chicken femurs to human cadaveric metacarpals.

    Methods: Sixteen fresh chicken femora and 20 fresh frozen cadaveric human metacarpals were imaged using a micro computed tomography scanner. The bones were then mechanically tested using four-point-bending and torsional testing.

    Results: There were no significant differences in macroscopic features between chicken femora and human metacarpals, including overall length, external radius, internal radius, cortical width and cross-sectional area of the diaphyseal cortex (p > 0.05). There were no significant differences in the trabecular number and spacing in the distal metaphysis of both groups (p > 0.05). The diaphysis and proximal metaphysis did not share any microarchitectural similarities. Four-point bending tests resulted in significantly higher yield forces, ultimate force, failure points and stiffness in human metacarpals (p < 0.05). Torsion tests resulted in significant higher ultimate torque and torsional rigidity in human metacarpals (p < 0.05).

    Conclusions: The chicken femur has structural and biomechanical differences to the fresh frozen human metacarpal despite the similarity in their macroscopic features.