Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Mixed-Dimensional Modeling of Time-Dependent Wave Problems Using the Panasenko Construction

    https://doi.org/10.1142/S2591728518500342Cited by:13 (Source: Crossref)
    This article is part of the issue:

    We consider the coupling of two-dimensional (2D) and one-dimensional (1D) models to form a single hybrid 2D–1D model for time-dependent linear wave problems. The 1D model is used to represent a 2D computational domain where the solution behaves approximately in a 1D way. This hybrid model, if designed properly, is a more efficient way to solve the full 2D model over the entire problem. Two important issues related to such hybrid 2D–1D models are (a) the design of the hybrid model and its validation (with respect to the original problem) and (b) the way the 2D–1D coupling is done, and the coupling error generated. This paper focuses on the second issue. The method used in this paper to couple the 1D and 2D models is the one proposed by Panasenko. This method has been used for mixed-dimensional coupling in many steady-state problems, and here it is being used for the first time for time-dependent problems. The hybrid formulation is derived, and the numerical accuracy and efficiency of the method are explored for a couple of basic problems.