World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

High Activity and Easily Hydrolyzable Sulfonylurea Inhibitor Design Based on Density Functional Theory Calculations

    https://doi.org/10.1142/S2737416521500034Cited by:1 (Source: Crossref)

    To find new sulfonylurea inhibitors with high efficacy and fast hydrolysis degradation rate, a few compounds were first designed based on the commercial product Chlorimuron-Ethyl (CE) by estimating the binding interaction between the inhibitor and the Acetohydroxyacid Synthase (AHAS) using the quantum mechanical approach. Meanwhile, the activation energy barriers of hydrolysis for the sulfonylurea inhibitors with the amino and nitro groups onto para position of the benzene ring were calculated. Based on the calculated binding interaction energy and hydrolysis energy barrier, six new sulfonylurea inhibitors I1–I6 were designed and synthesized. By measuring the half-lives through hydrolysis degradation assay, it was indicated that the compounds I1–I3 with the introduction of an amino group at the fourth position of benzene ring show much faster degradation rate than those compounds with nitro groups, which is in a good agreement with the calculated results for hydrolysis barrier. The herbicide activity tests show that the compounds I1 and I2 remained excellent herbicidal activity on both broadleaf weeds with soil treatment at a concentration about 150mg/l. Due to their short half-lives of chemical hydrolysis and high herbicidal activities, compounds I1 and I2 could be potential herbicidal candidates in the future, which are helpful for the sustainable development of the environment and ecology.