World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

HEARTBEAT CLASSIFICATION USING SUPPORT VECTOR MACHINES (SVMs) WITH AN EMBEDDED REJECT OPTION

    https://doi.org/10.1142/S0218001412500012Cited by:11 (Source: Crossref)

    In this paper, we introduce a new system for ECG beat classification using support vector machines classifier with a double hinge loss. The proposed classifier rejects samples that cannot be classified with enough confidence. Specifically in medical diagnoses, the consequence of a wrong classification can be so harmful that it is convenient to reject such sample. After ECG preprocessing, feature selection and extraction, our decision rule uses dynamic reject thresholds according to the cost of rejecting or misclassifying a sample. Significant performance enhancement is observed when the proposed approach is tested with the MIT-BIH arrythmia database. The achieved results are represented by the error reject tradeoff. We obtained 98.2% of sensitivity with no rejection and more than 99% of sensitivity for the optimal classification cost being competitive to other published studies.