World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MORE ON THE SUM-PRODUCT PHENOMENON IN PRIME FIELDS AND ITS APPLICATIONS

    https://doi.org/10.1142/S1793042105000108Cited by:182 (Source: Crossref)

    In this paper we establish new estimates on sum-product sets and certain exponential sums in finite fields of prime order. Our first result is an extension of the sum-product theorem from [8] when sets of different sizes are involed. It is shown that if and pε < |B|, |C| < |A| < p1-ε, then |A + B| + |A · C| > pδ (ε)|A|. Next we exploit the Szemerédi–Trotter theorem in finite fields (also obtained in [8]) to derive several new facts on expanders and extractors. It is shown for instance that the function f(x,y) = x(x+y) from to satisfies |F(A,B)| > pβ for some β = β (α) > α whenever and |A| ~ |B|~ pα, 0 < α < 1. The exponential sum ∑x∈ A,y∈Bεp(axy+bx2y2), ab ≠ 0 (mod p), may be estimated nontrivially for arbitrary sets satisfying |A|, |B| > pρ where ρ < 1/2 is some constant. From this, one obtains an explicit 2-source extractor (with exponential uniform distribution) if both sources have entropy ratio at last ρ. No such examples when ρ < 1/2 seemed known. These questions were largely motivated by recent works on pseudo-randomness such as [2] and [3].

    Finally it is shown that if pε < |A| < p1-ε, then always |A + A|+|A-1 + A-1| > pδ(ε)|A|. This is the finite fields version of a problem considered in [11]. If A is an interval, there is a relation to estimates on incomplete Kloosterman sums. In the Appendix, we obtain an apparently new bound on bilinear Kloosterman sums over relatively short intervals (without the restrictions of Karatsuba's result [14]) which is of relevance to problems involving the divisor function (see [1]) and the distribution (mod p) of certain rational functions on the primes (cf. [12]).