COMPENSATION COMPETITIVE LEARNING
Abstract
In general, in competitive learning the requirement for the initial number of prototypes is a difficult task, as we do not usually know the number of clusters in the input data a priori. The behavior and performance of the competitive algorithms are very sensitive to the initial locations and number of the prototypes. In this paper after investigating several important competitive learning paradigms, we present compensation techniques for overcoming the problems in competitive learning. Our experimental results show that competition with compensation can improve the performance of the learning algorithm.
Remember to check out the Most Cited Articles! |
---|
Check out these titles in artificial intelligence! |