World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Spring Sale: Get 35% off with a min. purchase of 2 titles. Use code SPRING35. Valid till 31st Mar 2025.

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEMI-SUPERVISED GRAPH PARTITIONING WITH DECISION TREES

    https://doi.org/10.1142/9781848163003_0009Cited by:0 (Source: Crossref)
    Abstract:

    In this paper we investigate a new framework for graph partitioning using decision trees to search for sub-graphs within a graph adjacency matrix. Graph partitioning by a decision tree seeks to optimize a specified graph partitioning index such as ratio cut by recursively applying decision rules found within nodes of the graph. Key advantages of tree models for graph partitioning are they provide a predictive framework for evaluating the quality of the solution, determining the number of sub-graphs and assessing overall variable importance. We evaluate the performance of tree based graph partitioning on a benchmark dataset for multiclass classification of tumor diagnosis based on gene expression. Three graph cut indices will be compared, ratio cut, normalized cut and network modularity and assessed in terms of their classification accuracy, power to estimate the optimal number of sub-graphs and ability to extract known important variables within the dataset.