World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

RENORMALIZED POLYAKOV LOOPS, MATRIX MODELS AND THE GROSS-WITTEN POINT

    https://doi.org/10.1142/9789812702159_0022Cited by:0 (Source: Crossref)
    Abstract:

    The values of renormalized Polyakov loops in the three lowest representations of SU(3) were measured numerically on the lattice. We find that in magnitude, condensates respect the large-N property of factorization. In several ways, the deconfining phase transition for N = 3 appears to be like that in the N = ∞ matrix model of Gross and Witten. Surprisingly, we find that the values of the renormalized triplet loop are described by an SU(3) matrix model, with an effective action dominated by the triplet loop. Future numerical simulations with a larger number of colors should be able to show whether or not the deconfining phase transition is close to the Gross-Witten point.