Solitary wave and elliptic function solutions of sinh-Gordon equation and its applications
Abstract
The sinhsinh-Gordon model is an important model in special nonlinear partial differential equations (PDEs) which is arising in solid-state physics, mathematical physics, fluid dynamics, fluid flow, differential geometry, quantum theory, etc. The exact solutions in the type of solitary wave and elliptic functions solutions are created of sinhsinh-Gordon model by employing modified direct algebraic scheme. Moments of a few solutions are also depicted graphically. These solutions helps the physicians and mathematicians to understand the physical phenomena of this model. This technique can be utilized on other models to launch further exclusively novel solutions for other categories of nonlinear PDEs occurring in mathematical Physics.